Figure 4a. Star Carr Formal Tools Technological Attributes Analyses Summary | Tool | Flin | t Type | | Summary of Selected Data | | | | | | | |------------------------|--|---|---|--|--|------------------------|--|----------------------------------|--|--| | Туре | Translucent | 36% | Drift 55% | | | | | | | | | Scrapers
(overall) | 9% | | | Almost 1/3 of all scrapers are exaptively used-through burinations: see scraper-burins. ● Tool blanks: flakes & blades, but also overshots and core rejuvenation pieces used as blanks reflects economising strategies. ● The high percentage of reduction for scrapers suggests economising behaviour. This in turn may infer pressure on resources. ● The high percentage of cortical drift flint possibly infers ad hoc use? | % scrapers Cortex Non Cortical *scraper burin | ns | <i>Transluce</i> 56% 44% ≈32% | 17%
83% | 47%
53% | | | End
scrapers | a small standard results. • The similar size that some piece | d error. All
standard er
ses for all r
s that were | though tl
rors are
naterials
e then us | in all materials (right) seems to be consistently low with the small translucent flint sample may have skewed the broadly acceptable- which suggests the results are safe. suggest a formal mental design. It is interesting then led flexibly – equipotentialy- and burinated! • The larger more 'usable pieces' as blanks for burins. | end scraper be a scraper be a scraper burins | urins 2 | ength
35.75mm
46.88mm
ranslucent
25% | Width 22.8mm 22.36mm Wolds ≈33% | 8mm 7.56mm 6mm 7.91mm olds Drift | | | side
scrapers | • 4.5% of trans | lucent flint | side scra | apers are burinated- see scraper burins. | % side scrapers *side scraper burins | | | | olds Drift
2% ≈3% | | | end & side
scrapers | | versa, b) it | was orig | a) an end scraper was retouched to become a side inally made as one and remade into the other, or c) the isinterpreted! | % end & side scrapers Translucent Wolds Drift *side & end scraper burins 2% 2% 1>% | | | | | | | Awls | 8% | 45% | 7% | Most of the wolds and drift flint tool blanks are non-cortical (see Baird 1995 for types) representing the mid to later stages of reduction. Whereas more of the translucent flint tools are cortical suggesting economising behaviours. Flake & blade blanks were used almost equally. Where two ends are retouched (e.g. wolds 3 out of 49, and drift 2 of 52), this infers equipotentiality. Burinations here are retooling or equipotentiality#. | % Awls
#Burinated av | | slucent
1% | | rift
9% | | | Microliths | 15% | 37% | 48% | There is no immediately obvious equipotential use evident from these results. | % Microliths Cortex Non Cortical | Transluce
97%
3% | ent Wo. 09 | 6 93 | | | Figure 4b. Star Carr Formal Tools Technological Attributes Analyses Summary | Tool | Flin | t Type | _ | Summary of Selected Data | | | | | | |------------------------------------|-------------|--------|-------|--|--|---|--|--|--| | Туре | Translucent | Wolds | Drift | | | | | | | | Burins | 11% | 34% | 55% | This data includes the scraper-burins and awl burins. 51% of burins are equipotential (i.e. tools chosen as a blank for burination). Most of these (55%) are burinated-end scrapers, 44% of Awls & other exaptive-burin types 1>%. 49% of burins are a on a 'clean' unused blank. The high proportion of cortex suggests economising strategies. The cortex groups represented suggest that translucent blanks were struck from the mid to later stages of reduction. Whereas wolds- later. Burins were predominantly made on blades. Of burins proper & other burinated tools: 67% have one facet, and 32% have multiple facets. This could represent retooling or exaptive tool use. It is thus striking the amount of exaptive tool use if we combine multiple facets with the exaptive tools by blank choice (e.g. scraper-burin): (see right). The location of retouch differs between the exaptive and non-exaptive burins. For example: on scraper-burins the burinations are on retouch and rarely on natural edges (which lends weight to the exaptive interpretation). On single proper burins the burination facets are generally on natural edges and some retouched. Generally burin size (all categories) is consistent: Length 45-7mm, Width 22mm and depth 9-9mm. Although as a rule wolds burins are marginally larger. | % Burins Cortex Non Cortical % Burins *Scraper-Burins *Awl-Burins Equipotential by blank choice Burins (non-equipotential) % Burins Burins (non-equipotential) Total Equipotential Burins; | Translucent 42% 58% Translucent 39% ≈3% 42% 58% Translucent 28% 72% | Wolds 19% 81% Wolds 57% 2% 58% 42% Wolds 23% 77% | Drift 58% 42% Drift 47% 2% 49% 51% Drift 30% 70% | | | Total Exaptive/Equipotential Tools | | | ools | 17% of Formal Tools at Star Carr = Exaptive/Equipotential. | • 83% of Formal Tools at Star Carr = Non-
Exaptive/Non-Equipotential. | | | on- | | *Note:* The technological attributes analysis that is summarised in this table was undertaken just on the formal tools (Preston 1999). Thus the results are only tentative. A full reanalysis of Clark's (1954) assemblage is needed, as comparisons of the non-formal tools, debitage and cores would be particularly useful. Symbols: * = Equipotential. # = equipotential or retooling depending on the morphology. ‡ includes Exaptive pieces by: blank choice alone, multiple burinations alone & both multiple facets on a reused tool (exaptive by blank choice)